Environmental drivers and (biological) control of invasive ragweed populations across Europe

Suzanne Lommen¹, Caspar Hallmann², Eelke Jongejans², Benno Augustinus³,

Urs Schaffner³, Heinz Müller-Schärer¹, SMARTER Task Force 'Population Dynamics'⁴

¹ Unit Ecology & Evolution, Dept of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland Email: suzanne.lommen@unifr.ch

² Radboud University, Institute for Water and Wetland Research, P.O. Box 9100, 6500 GL Nijmegen, Netherlands

³ Ecosystem Management, CABI, Rue des Grillons 1, CH-2800 Delemont, Switzerland

⁴ EU COST Action «Sustainable management of Ambrosia artemisiifolia in Europe» (SMARTER), www.ragweed.eu

Background

The continued spread of the invasive common ragweed, *Ambrosia artemisiifolia*, in Europe, is a growing problem for human health and agriculture. Climate change is expected to aggravate it even more. Within the European Research network SMARTER "Sustainable Management of *Ambrosia artemisiifolia* in Europe", we take a demographic approach to assess the efficacy of alternative management options <u>across the European continent</u>, and on the <u>long term</u>.

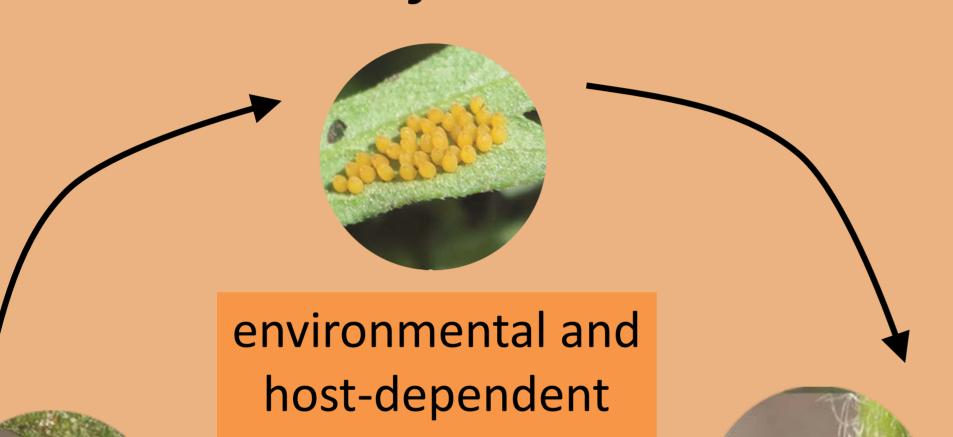
Objectives

We develop demographic models of

- the ragweed to understand the environmental drivers of spatial and temporal variation in local ragweed dynamics (factors: climate, weather, habitat)
- ii) herbivorous insects that are potential biocontrol agents to describe their environmental-dependent development and performance (factors: climate, host plant)

www.cabi.org

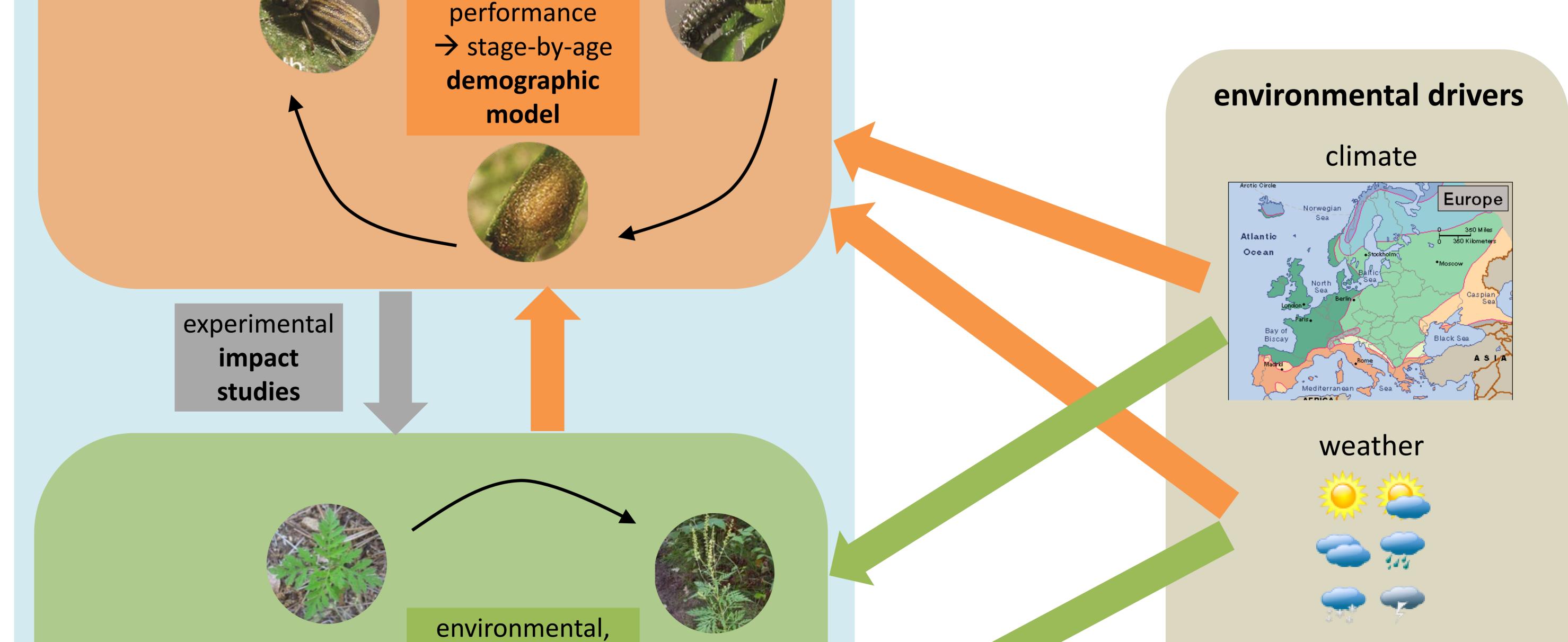
UNI FR


We especially focus on the potential for classical biological control by exotic herbivorous insects from the native range of the plant.

coupled plant-herbivore demographic model

insects considered for biocontrol

ca. 5 candidate agents,in the field and/or inthe (quarantine) lab


development and

iii) the combination: reciprocal density-dependent
plant-herbivore dynamics to project the potential long-term
impact of these different potential biocontrol agents on ragweed

Outlook

We envisage the following extensions of these models in future:

- towards biocontrol risk-assessment, by assessing insect performance on non-target host plant species
- towards spatial models by linking them to distribution and dispersal models of the ragweed and the insects (habitat suitability, dispersal kernels, interacting particles, through collaboration)
- towards evolutionary questions (adaptation) by including the genetics of ragweed and the insects (common garden experiments, genetic population structure, *through collaboration*)

40-50 field populations across

Europe

size- and densitydependent vital rates → periodic

demographic IPM

invasive common ragweed

Acknowledgements

We acknowledge financial support from the Swiss State Secretariat for Education, Research and Innovation, and the EU COST Action FA1203 "Sustainable management of *Ambrosia artemisiifolia* in Europe (SMARTER)".